IBIS-AMI Correlation and BIRD Update

SiSoft
IBIS-ATM Working Group
4/1/08
Overview

• DesignCon IBIS Summit presentation demonstrated interoperability and performance
 – SiSoft & Cadence IBIS-AMI models running together in SiSoft’s test simulator

• Recent effort looked at simulation results
 – Run the same TX model in SiSoft & Cadence test simulators
 – Correlate both sets of results back to original SPICE simulations

• Identified areas of IBIS-AMI spec that needed clarification
Terminology

- **Bit stream** $b(t)$
 - Sum of delta functions

- **Data symbol** $p(t)$
 - Single bit width pulse

- **Transmitter equalization** $h_{TE}(t)$
 - Sum of weighted delta functions
 - Coefficients & delays

- **Transmitter characteristic** $h_{TX}(t)$
 - Rise/fall time
 - Voltage swing
 - Drive impedance
 - Capacitance
Terminology (Cont’d)

- Receiver equalization $h_{RE}(t)$
 - Sum of weighted delta functions
 - Coefficients & delays

- Receiver characteristic $h_{RX}(t)$
 - Rise/fall time
 - Voltage swing
 - Drive impedance
 - Capacitance
Channel Math

• Channel impulse response
 \[h_{CR}(t) = h_{TX}(t) \otimes h(t) \otimes h_{RX}(t) \]

• Equalized channel impulse response
 = \[h_{TE}(t) \otimes h_{CR}(t) \otimes h_{RE}(t) \]

• Waveform @ RX pad
 = \[p(t) \otimes b(t) \otimes h_{TE}(t) \otimes h_{CR}(t) \]

• Waveform @ RX sampler
 = \[p(t) \otimes b(t) \otimes h_{TE}(t) \otimes h_{CR}(t) \otimes h_{RE}(t) \]
IBIS-ATM Algorithmic Models

Impulse Response Processing
- Model Settings
- Channel Impulse Response
 - TX "INIT"
 - RX "INIT"
 - With TX EQ
 - With TX, RX EQ

Waveform Processing
- Model Settings
- Stimulus
 - TX "GETWAVE"
 - RX "GETWAVE"
 - With TX EQ
 - With TX, RX EQ

Recovered Clock
- Model Settings
- Reconstructed Clock
IBIS_AMI Specific Terminology

• TX Equalization
 \(h_{TEI}(t) \) Filtering applied by TX AMI_Init
 \(h_{TEG}(t) \) Filtering applied by TX AMI_Getwave

• RX Equalization
 \(h_{REI}(t) \) Filtering applied by RX AMI_Init
 \(h_{REG}(t) \) Filtering applied by RX AMI_Getwave
TX AMI_Init Processing

Channel Impulse Response

$h_{CR}(t)$

$h_{TEI}(t)$

$h_{CR}(t) \otimes h_{TEI}(t)$

With TX EQ
TX AMI_Getwave Processing

Stimulus / Waveform

b(t) \otimes p(t) \otimes h_{CR}(t) \otimes h_{TEI}(t) \otimes h_{TEG}(t)

Waveform Processing

TX “GETWAVE”

Note: for this specific model

h_{TEG}(t) = h_{CR}(t) \otimes h_{TEI}(t)
Analysis Flow - SiSoft

Impulse Response Processing

Channel Impulse Response

$h_{CR}(t)$

TX “INIT”

$h_{CR}(t) \otimes h_{TEI}(t)$

AMI_Getwave Processing

Stimulus

$b(t) \otimes p(t)$

TX “GETWAVE”

$b(t) \otimes p(t) \otimes h_{TEG}(t)$
Analysis Flow - Cadence

Impulse Response Processing

- Channel Impulse Response
- TX "INIT"
- With TX EQ

- $h_{CR}(t)$
- $h_{TEI}(t)$

AMI_Getwave Processing

- Waveform
- TX "GETWAVE"
- With TX EQ

- $b(t) \otimes p(t)$
- $\otimes h_{CR}(t)$
- $\otimes h_{TEI}(t)$
- $\otimes h_{TEG}(t)$
SiSoft TX Model in Cadence Tester

AMI_Getwave Processing

Waveform

TX “GETWAVE”

With TX EQ

\[b(t) \times p(t) \times h_{CR}(t) \times h_{TEI}(t) \]

\[\times h_{TEG}(t) = \times h_{CR}(t) \times h_{TEI}(t) \]

\[b(t) \times p(t) \times h_{CR}(t) \times h_{TEI}(t) \times h_{TEG}(t) = b(t) \times p(t) \times h_{CR}(t) \times h_{TEI}(t) \times h_{CR}(t) \times h_{TEI}(t) \]
Simulation Results

• SiSoft TX model modified to work in current Cadence test environment
 – Allowed testing of proposed flows & correlation

• Flows tested
 – Cadence toolkit, EQ in AMI_Init
 • \(h_{CR}(t) \otimes h_{TEI}(t) \otimes b(t) \otimes p(t) \)
 – Cadence toolkit, EQ in AMI_Getwave
 • \(b(t) \otimes p(t) \otimes h_{CR}(t) \otimes h_{TEG}(t) \)
 – SiSoft toolkit, EQ in AMI_Getwave
 • \(b(t) \otimes p(t) \otimes h_{CR}(t) \otimes h_{TEG}(t) \)

• Compared to HSPICE baseline results
Simulation Results

AMI Modeling Comparison
CDNS Init Eq (Red), CDNS Getwave Eq (Purple), SiSoft Getwave Eq (Blue), HSPICE (Green)

Time (ns)
Simulation Results

AMI Modeling Comparison
CDNS Init EQ (Red), CDNS Getwave EQ (Purple), SiSoft Getwave EQ (Blue), HSPICE (Green)
When Models Return Both AMI_Init and AMI_Getwave …

• What do the AMI_Init and AMI_Getwave calls in a model represent?
 – Different models for the entire device’s behavior?
 • (e.g. an approximate vs. detailed model)
 • Implies that AMI_Init and AMI_Getwave results are independent
 – Models for different stages of the devices behavior?
 • (e.g. front end filtering in AMI_Init, DFE Equalization in AMI_Getwave)
 • Impiles that AMI_Init and AMI_Getwave calls must be chained together to model the full device behavior
Proposal

• Drop “digital input” to TX AMI_Getwave call
 – Purpose of TX AMI_Getwave call is to apply $h_{TEG}(t)$, which should only represent the device’s filtering behavior

• Allow AMI model to specify how AMI_Init and AMI_Getwave outputs are handled
 – New Reserved_Parameter “Use_Init_Output”
 • True: chain the model calls together
 • False: treat model calls as independent
Updated IBIS-AMI Text

Current Version

3.2.2.1 wave

A vector of a time domain waveform, sampled uniformly at an interval specified by the ‘sample_interval’ specified during the init call. The waveform is both input and output. The EDA platform provides the waveform. The algorithmic model is expected to modify the waveform in place.

Depending on the EDA platform and the analysis/simulation method chosen, the input waveform could include many components. For example, the input waveform could include:

New Version

3.2.2.1 wave

A vector of a time domain waveform, sampled uniformly at an interval specified by the ‘sample_interval’ specified during the init call. The waveform is both input and output. The EDA platform provides the waveform. The algorithmic model is expected to modify the waveform in place by applying a filtering behavior, for example, an equalization function, being modeled in the AMI_Getwave call.

Depending on the EDA platform and the analysis/simulation method chosen, the input waveform could include many components. For example, the input waveform could include:

New Addition

Add after Init_Returns_Impulse

Use_Init_Output:

Use_Init_Output is of usage Info and type Boolean. When Use_Init_Output is set to “True”, the effects of the AMI_Init and AMI_Getwave calls are chained together by convolving the impulse response returned by AMI_Init with the input waveform, which is then presented to the AMI_Getwave call.

If the Reserved Parameter, Use_Init_Output, is set to “False”, EDA tools will use the original (unfiltered) impulse response of the channel. The algorithmic model is expected to modify the waveform in place.

The default value for this parameter is “True”, instructing the EDA tool to use the output impulse response from the AMI_Init function when creating the input wave for the AMI_Getwave function.

If Use_Init_Output is False, GetWave_Exists must be True.

Minor changes WRT missing words etc.

Current Version

3.1.2.6 AMI_parameters (_in and _out)

Memory for AMI_parameters_in is allocated and de-allocate by the EDA. The memory pointed to by AMI_parameters_out is allocated and by the model.

New Version

3.1.2.6 AMI_parameters (_in and _out)

Memory for AMI_parameters_in is allocated and de-allocated by the EDA platform. The memory pointed to by AMI_parameters_out is allocated and de-allocated by the model.