Creating Broadband Analog Models for SerDes Applications

Adge Hawes, IBM
adge@uk.ibm.com
Doug White, Cisco
dbwhite@cisco.com
Walter Katz, SiSoft
wkatz@sisoft.com
Todd Westerhoff, SiSoft
twesterh@sisoft.com

DesignCon 2009 IBIS Summit
Santa Clara, CA
February 5, 2009
Agenda

- IBIS-AMI Models
- Analog Output Characteristics
- SerDes Reference Platforms
- SerDes Driver Modeling
- Correlation
- Existing Proposals
- The Direct Path
- Summary
IBIS-AMI Models

An IBIS-AMI model has two parts:

Analog Model
- Models unequalized analog device behavior
- Traditional IBIS table-driven models supplied as text (.IBS) files
- Used to characterize analog network and derive impulse response
- Analog model points to additional algorithmic model

Algorithmic Model
- Models equalization and clock recovery behavior
- Supplied as executable code
- Models can operate at two different levels:
 - INIT: impulse response processing
 - GETWAVE: time-domain waveform processing
Analog Output Characteristics

- Frequency-dependence of buffer behavior has been well documented
 - Arpad Muranyi, 2003
- Both transmission and reflection behaviors are frequency-dependent
- Existing IBIS black-box model doesn’t represent broadband behavior

Michael Mirmak
IBIS-ATM Work Archive
1-Oct-2008
SerDes Analog Model Requirements

• Accurately model impedance and capacitance (transmission and reflection) characteristics over a wide frequency range

• Leverage existing IBIS format

• Leverage existing vendor data and processes

• Easy to understand and use
SerDes Reference Platforms

- Traditionally, IBIS models have been compared to SPICE simulations and physical measurement.
- SerDes models are usually compared to internal vendor tools, which are correlated to measurement.
Modeling SerDes Drivers

- Since we’re comparing to SerDes vendor tools, we should understand how they model analog circuit behavior.
- One method is to represent the driver as an ideal source in series with S-parameter data.
- This scheme is simple to implement and models transmission / reflection characteristics across a wide frequency range.
How Can We Do This in IBIS?

- An ideal source could be approximated with existing IBIS constructs
 - Better method is to just use an ideal source
- Algorithmic models handle the equalization behavior
- How do we include the S-parameter block?
Current IBIS Proposals

- Michael Mirmak has proposed an N-stage RC ladder network
- Could frequency-dependent behavior be adequately represented in this manner?

- Walter Katz’s “IBIS Interconnect SPICE” proposal could be used to encapsulate S-parameter data
The Direct Path

- Point directly to a TOUCHSTONE® file from within the buffer or component model
 - TOUCHSTONE is already an EIA standard
- The S-Parameter element would be inserted between an ideal source and the “pad” nodes

```
TSTONEFILE max* drv_bc.s4p DH PH DL PL
TSTONEFILE typ* drv_tc.s4p DH PH DL PL
TSTONEFILE min* drv_wc.s4p DH PH DL PL
```

* Corners need further discussion

Touchstone® is a registered trademark of Agilent Technologies, Inc. and is used with permission.
Correlation to Reference Platforms

- How well would the S-parameter scheme work?
 - Commercial tools are already using it
 - Results for one tool were reported at the DAC 2008 Summit

IBIS-AMI Model Results

Correlation to IBM HSSCDR
Summary

- Analog buffers have frequency-dependent transmission/reflection behaviors that need to be properly represented for SerDes analysis.
- An ideal source / S-parameter combination models these behaviors well:
 - Results correlate to established vendor tools.
- Existing IBIS efforts can be adapted to meet this requirement, or we can point to S-parameter data directly:
 - Main issue is expediency: need is NOW.
 - Direct method already in production use.